

January 6, 2020

1200 New Jersey Ave., SE Washington, D.C. 20590

In Reply Refer To: HSST-1/CC-155

Mr. Felipe Almanza TrafFix Devices Inc. 160 Avenida La Pata San Clemente California 92673

Dear Mr. Almanza:

This letter is in response to your March 13, 2019 request for the Federal Highway Administration (FHWA) to review a roadside safety device, hardware, or system for eligibility for reimbursement under the Federal-aid highway program. This FHWA letter of eligibility is assigned FHWA control number CC-155 and is valid until a subsequent letter is issued by FHWA that expressly references this device.

# Decision

The following device is eligible within the length-of-need, with details provided in the form which is attached as an integral part of this letter:

• SLED to MGS Guardrail

# **Scope of this Letter**

To be found eligible for Federal-aid funding, new roadside safety devices should meet the crash test and evaluation criteria contained in the American Association of State Highway and Transportation Officials'(AASHTO) Manual for Assessing Safety Hardware (MASH). However, the FHWA, the Department of Transportation, and the United States Government do not regulate the manufacture of roadside safety devices. Eligibility for reimbursement under the Federal-aid highway program does not establish approval, certification or endorsement of the device for any particular purpose or use.

This letter is not a determination by the FHWA, the Department of Transportation, or the United States Government that a vehicle crash involving the device will result in any particular outcome, nor is it a guarantee of the in-service performance of this device. Proper manufacturing, installation, and maintenance are required in order for this device to function as tested.

This finding of eligibility is limited to the crashworthiness of the system and does not cover other structural features, nor conformity with the Manual on Uniform Traffic Control Devices.

#### **Eligibility for Reimbursement**

Based solely on a review of crash test results and certifications submitted by the manufacturer, and the crash test laboratory, FHWA agrees that the device described herein meets the crash test and evaluation criteria of the AASHTO's MASH. Therefore, the device is eligible for reimbursement under the Federal-aid highway program if installed under the range of tested conditions.

Name of system: SLED to MGS Guardrail Type of system: Crash Cushion Test Level: MASH Test Level 3 (TL3) Testing conducted by: KARCO Date of request: March 13, 2019

FHWA concurs with the recommendation of the accredited crash testing laboratory on the attached form.

# Full Description of the Eligible Device

The device and supporting documentation, including reports of the crash tests or other testing done, videos of any crash testing, and/or drawings of the device, are described in the attached form.

# **Notice**

This eligibility letter is issued for the subject device as tested. Modifications made to the device are not covered by this letter. Any modifications to this device should be submitted to the user (i.e., state DOT) as per their requirements.

You are expected to supply potential users with sufficient information on design, installation and maintenance requirements to ensure proper performance.

You are expected to certify to potential users that the hardware furnished has the same chemistry, mechanical properties, and geometry as that submitted for review, and that it will meet the test and evaluation criteria of AASHTO's MASH.

Issuance of this letter does not convey property rights of any sort or any exclusive privilege. This letter is based on the premise that information and reports submitted by you are accurate and correct. We reserve the right to modify or revoke this letter if: (1) there are any inaccuracies in the information submitted in support of your request for this letter, (2) the qualification testing was flawed, (3) in-service performance or other information reveals safety problems, (4) the system is significantly different from the version that was crash tested, or (5) any other information indicates that the letter was issued in error or otherwise does not reflect full and complete information about the crashworthiness of the system.

# **Standard Provisions**

- To prevent misunderstanding by others, this letter of eligibility designated as FHWA control number CC-155 shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed upon request.
- This letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder.
- This FHWA eligibility letter is not an expression of any Agency view, position, or determination of validity, scope, or ownership of any intellectual property rights to a specific device or design. Further, this letter does not impute any distribution or licensing rights to the requester. This FHWA eligibility letter determination is made based solely on the crash-testing information submitted by the requester. The FHWA reserves the right to review and revoke an earlier eligibility determination after receipt of subsequent information related to crash testing.

Sincerely,

Michael S. Jieffith

Michael S. Griffith Director, Office of Safety Technologies Office of Safety

Enclosures

# Request for Federal Aid Reimbursement Eligibility of Highway Safety Hardware

|           | Date of Request: | March 13, 2019                                                       | New | ○ Resubmission |
|-----------|------------------|----------------------------------------------------------------------|-----|----------------|
|           | Name:            | Robert Ramirez                                                       |     |                |
| ter       | Company:         | TrafFix Devices, Inc.                                                |     |                |
| Submitter | Address:         | 160 Avenida La Pata, San Clemente CA, 92673                          |     |                |
| Suk       | Country:         | United States                                                        |     |                |
|           | To:              | Michael S. Griffith, Director<br>FHWA, Office of Safety Technologies |     |                |

I request the following devices be considered eligible for reimbursement under the Federal-aid highway program.

| Device & Testing Criterion - Enter from right to left starting with Test Level |                                                                          |                       | !-!-!             |               |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|-------------------|---------------|
| System Type                                                                    | Submission Type                                                          | Device Name / Variant | Testing Criterion | Test<br>Level |
| 'CC': Crash Cushions,<br>Attenuators, & Terminals                              | <ul> <li>Physical Crash Testing</li> <li>Engineering Analysis</li> </ul> | SLED to Guardrail     | AASHTO MASH       | TL3           |

By submitting this request for review and evaluation by the Federal Highway Administration, I certify that the product(s) was (were) tested in conformity with the AASHTO Manual for Assessing Safety Hardware and that the evaluation results meet the appropriate evaluation criteria in the MASH.

# Individual or Organization responsible for the product:

| Contact Name:                                                                                             | ontact Name: Robert Ramirez Same as Submitter 🔀                |                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------|--|--|--|
| Company Name:                                                                                             | TrafFix Devices, Inc.                                          | Same as Submitter 🔀  |  |  |  |
| Address:                                                                                                  | 160 Avenida La Pata, San Clemente CA, 92673                    | Same as Submitter 🔀  |  |  |  |
| Country:                                                                                                  | United States                                                  | Same as Submitter 🔀  |  |  |  |
| Enter below all dis                                                                                       | closures of financial interests as required by the FHWA `Feder | al-Aid Reimbursement |  |  |  |
| Eligibility Process for Safety Hardware Devices' document.                                                |                                                                |                      |  |  |  |
| TrafFix Devices Inc. and Applus IDIADA KARCO Engineering LLC share no financial interests between the two |                                                                |                      |  |  |  |
| organizations. This includes no shared financial interest but not limited to:                             |                                                                |                      |  |  |  |
| i. Compensation including wages, salaries, commissions, professional fees, or fees for business referrals |                                                                |                      |  |  |  |
| iii. Research funding                                                                                     | iii. Research funding or other forms of research support;      |                      |  |  |  |
| iv. Patents, copyrights, licenses, and other intellectual property interests;                             |                                                                |                      |  |  |  |
| vi Business ownership and investment interests                                                            |                                                                |                      |  |  |  |

vi. Business ownership and investment interests.

Version 10.0 (05/16) Page 2 of 9

# PRODUCT DESCRIPTION

 New Hardware or Significant Modification C Modification to Existing Hardware

The SLED is a free standing, non-redirective, gating crash cushion, designed to shield the end of guardrail. The SLED does not require anchoring to the road surface and can be used on concrete, asphalt, gravel, and dirt surfaces. The SLED was tested on a dirt surface. The SLED can be used in TL-1, TL-2, and TL-3 installations to treat the end of guardrail. The SLED attached to guardrail test series was conducted at TL-3 conditions. The SLED utilizes a transition that is mechanically attached to the guardrail it is shielding. The SLED system consists of four main components: three yellow water filled modules, one yellow empty module, one Containment Impact Sled (CIS), and one transition. The SLED's overall dimensions are 25.25 ft. (7.7 m) long (pin to pin) x 27.25 in. (0.7 m) wide x 45.875 in. (1.2 m) tall. The yellow modules are manufactured from polyethylene that is UV stabilized. The SLED system consists of three water filled modules with the front empty module connected to the steel CIS. The water filled modules weigh approx. 2,000 lbs. (907 kg) when filled. The SLED's yellow water filled modules contain a fill lid, which incorporates a pop-up float water level indicator for identifying that modules are filled to the appropriate level. Permanently molded within the plastic modules are four corrosion resistant cables. The modules are designed with knuckles at the ends which contains a series of vertically aligned concentric holes that allow a steel t-pin to be inserted to connect adjacent modules together. When modules are pinned together there are a total of eleven knuckles aligned with the steel t-pin inserted. At the front of the SLED system is the steel CIS that is connected to the front yellow empty module. The CIS is designed using a steel tube frame and sheet metal construction. The front yellow empty module is connected to the CIS through the vertically aligned concentric holes in the knuckles and the t-pin connects the module and the CIS together. This is the same connection method used between the three yellow water filled modules. Bolted to the front impact face on the CIS is the directional indicator panel. The directional indicator panel is a square sheet of plastic that contains gore point directional sheeting on one side and left, or right, directional sheeting on the opposite side. This allows the user to convert the panel to the proper direction when installing the SLED. The directional indicator panel contours to the curved shape on the front impact face on the CIS and is secured by six bolts. Other directional sheeting and markings are available. The SLED is attached to the guardrail using a w-beam transition panel and a standard panel attached to the w-beam. The SLED transition is made of three components: one steel transition frame, one standard transition panel, and one w-beam transition panel. The transition frame is positively connected to the rear most water filled module through the vertically aligned concentric holes in the knuckles using a steel drop pin. This is the same connection method used between the yellow water filled modules and between the CIS and the front yellow empty module. The transition panels are pinned to the transition frame using outboard alignment pins designed into the transition frame. The transition panel is attached to the guardrail panel using eight guardrail bolts. The standard transition panel and w-beam transition panels are also connected to the w-beam using one guardrail post bolt and two wooden blockouts.

# CRASH TESTING

By signature below, the Engineer affiliated with the testing laboratory, agrees in support of this submission that all of the critical and relevant crash tests for this device listed above were conducted to meet the MASH test criteria. The Engineer has determined that no other crash tests are necessary to determine the device meets the MASH criteria.

| Engineer Name: Steven Matsusaka |                                   |                                                                                                              |                                                                     |
|---------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Engineer Signature:             | Steven Matsusaka                  | Digitally signed by Stever<br>DN: cn=Steven Matsusak<br>ou, email=Steven.Matsus<br>Date: 2019.04.12 17:08:58 | a, o=Applus IDIADA KARCO Engineering, LLC.,<br>aka@idiada.com, c=US |
| Address:                        | 9270 Holly Rd, Adelanto, CA 92301 |                                                                                                              | Same as Submitter 🗌                                                 |
| Country:                        | United States of America          |                                                                                                              | Same as Submitter 🗌                                                 |

A brief description of each crash test and its result:

Version 10.0 (05/16) Page 3 of 9

|                         |                                                     | 5                                |
|-------------------------|-----------------------------------------------------|----------------------------------|
| Required Test<br>Number | Narrative<br>Description                            | Evaluation<br>Results            |
| 3-30 (1100C)            | Not applicable for non-redirective crash cushion    | Non-Relevant Test, not conducted |
| 3-31 (2270P)            | Not applicable for non-redirective crash cushion    | Non-Relevant Test, not conducted |
| 3-32 (1100C)            | Not applicable for non-redirective crash<br>cushion | Non-Relevant Test, not conducted |
| 3-33 (2270P)            | Not applicable for non-redirective crash<br>cushion | Non-Relevant Test, not conducted |
| 3-34 (1100C)            | Not applicable for non-redirective crash<br>cushion | Non-Relevant Test, not conducted |
| 3-35 (2270P)            | Not applicable for non-redirective crash<br>cushion | Non-Relevant Test, not conducted |
| 3-36 (2270P)            | Not applicable for non-redirective crash<br>cushion | Non-Relevant Test, not conducted |
| 3-37 (2270P)            | Not applicable for non-redirective crash<br>cushion | Non-Relevant Test, not conducted |
| 3-38 (1500A)            | Not applicable for non-redirective crash cushion    | Non-Relevant Test, not conducted |

# Version 10.0 (05/16) Page 4 of 9

| <b>Required</b> Test   | Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evaluation |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Number                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results    |
| Number<br>3-40 (1100C) | Description<br>The SLED was positioned offset a quarter of<br>the vehicle's width towards the passenger<br>side. The offset position examines the risk of<br>exceeding occupant risk values, vehicle<br>instability, and vehicle yaw movement. The<br>test was conducted using a commercially<br>available 2013 Kia Rio 4-door sedan with a<br>test inertial mass of 2,471.3 lbs. (1,121.0 kg).<br>The test vehicle impacted the SLED at a<br>velocity of 62.78 mph (101.03 km/h) and at<br>an impact angle of 0.5°. The test vehicle<br>impacted the steel Containment Impact<br>Sled (CIS), pushing it rearward crushing and<br>rupturing the yellow empty module within<br>the CIS. As the vehicle continued<br>downstream the three yellow water filled<br>modules were crushed, ruptured, and<br>dispersed the contained water. The vehicle<br>rotated in a counter clockwise direction<br>about its yaw axis before coming to a<br>controlled stop 23.0 ft. (7.0 m) forward and<br>10.4 ft. (3.2 m) lateral from the initial point<br>of impact. The yellow SLED modules<br>remained tethered together and securely<br>attached to the guardrail via the steel t-pins<br>between the module knuckles which<br>connects directly to the internal molded in<br>steel cables. The impacting vehicle was<br>brought to a controlled stop, remained<br>upright and did not exhibit vaulting<br>throughout the impact event. The test<br>vehicle's occupant compartment was not<br>penetrated and there was no in cab<br>deformation beyond allowable limits. The<br>maximum roll and pitch angle did not<br>exceed 75° and occupant risk values were<br>within limits per MASH specifications for<br>Occupant Impact Velocity (OIV) and<br>Ridedown Acceleration (RA). The SLED<br>attached to guardrail met all the |            |

# Version 10.0 (05/16)

|              |                                                  |      | Page 5 of 9 |
|--------------|--------------------------------------------------|------|-------------|
|              | The SLED was positioned in line with the         |      |             |
|              | center of the test vehicle. The inline           |      |             |
|              | centered position examines the risk of           |      |             |
|              | exceeding occupant risk values, vehicle          |      |             |
|              | instability, capacity to absorb sufficient       |      |             |
|              | kinetic energy, and the SLED's ability to        |      |             |
| •            | bring the vehicle to a controlled stop. The      |      |             |
|              | test was conducted using a commercially          |      |             |
|              | available 2013 RAM 1500 4-door pickup            |      |             |
|              | truck with a test inertial mass of 4,986.8 lbs.  |      |             |
|              | (2,262.0 kg). The test vehicle impacted the      | *    |             |
|              | SLED at a velocity of 62.75 mph (100.99 km/      |      |             |
|              | h) and at an impact angle of 0.6°. The test      |      |             |
|              | vehicle impacted the steel Containment           |      |             |
|              | Impact Sled (CIS), pushing it rearward           |      |             |
|              | crushing the yellow empty module within          |      |             |
|              | the CIS. As the vehicle continued                |      |             |
|              | downstream the three yellow water filled         |      |             |
|              | modules were crushed, ruptured, and              |      |             |
|              | dispersed the contained water. The yellow        |      |             |
| 3-41 (2270P) | SLED modules remained tethered together          | PASS |             |
|              | and securely attached to the guardrail via       |      |             |
|              | the steel t-pins between the module              |      |             |
|              | knuckles which connects directly to the          |      |             |
|              | internal molded in steel cables. The             |      |             |
|              | impacting vehicle was brought to a stop 8.2      |      |             |
|              | ft. (2.5 m) rearward and 5.6 ft. (1.7 m) lateral |      |             |
|              | from the initial point of impact, remained       |      |             |
|              | upright and did not exhibit vaulting             |      |             |
|              | throughout the impact event. The test            |      |             |
|              | vehicle's occupant compartment was not           |      |             |
|              | penetrated and there was no in cab               |      |             |
|              | deformation beyond allowable limits. The         |      |             |
|              | maximum roll and pitch angle did not             |      |             |
|              | exceed 75° and occupant risk values were         |      |             |
|              | within limits per MASH specifications for        |      |             |
|              | Occupant Impact Velocity (OIV) and               |      |             |
|              | Ridedown Acceleration (RA). The SLED             |      |             |
|              | attached to guardrail met all the                |      |             |
|              |                                                  |      |             |
|              | requirements of MASH Test 3-41.                  |      |             |

# Version 10.0 (05/16) Page 6 of 9

| The SLED was positioned at a nominal angle<br>of 5° with the centerline of the test vehicle<br>aligned with the nose of the system. The<br>angled position examines the risk of<br>exceeding occupant risk values, vehicle<br>instability, capacity to absorb sufficient<br>impact energy, and the SLED's ability to<br>bring the vehicle to a controlled stop. The<br>test was conducted using a commercially<br>available 2016 Hyundai Accent 4-door<br>sedan with a test inertial mass of 2,426.1 lbs.<br>(1,100.5 kg). The test vehicle impacted the<br>SLED at a velocity of 61.99 mph (99.76 km/<br>h) and at an impact angle of 4.2°. The test<br>vehicle impacted the steel Containment<br>Impact Sled (CIS), pushing it downstream<br>crushing and rupturing the yellow empty<br>module within the CIS. As the vehicle<br>continued downstream the three yellow<br>water filled modules were crushed,<br>ruptured, and dispersed the contained<br>water filled modules were crushed,<br>ruptured, and bigersed the contained<br>water filled modules was is before coming<br>to a controlled stop 15.7 ft. (4.8 m)<br>downstream and 5.8 ft. (1.8 m) lateral from<br>the initial point of impact. The yellow SLED<br>modules remained tethered together and<br>securely attached to the guardrail via the<br>steel t-pins between the module knuckles<br>which connects directly to the internal<br>molded in steel cables. The impacting<br>vehicle was brought to a controlled stop,<br>remained upright and did not exhibit<br>vaulting throughout the impact event. The<br>test vehicle's occupant compartment was<br>not penetrated and there was no in cab<br>deformation beyond allowable limits. The<br>maximum roll and pitch angle did not<br>exceed 75° and occupant risk values were<br>within limits per MASH specifications for<br>Occupant Impact Velocity (OIV) and<br>Ridedown Acceleration (RA). The SLED<br>attached to guardrail we all the |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| requirements of MASH Test 3-42.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Version 10.0 (05/16) Page 7 of 9

|              |                                                 |      | Page 7 of 9 |
|--------------|-------------------------------------------------|------|-------------|
|              | The SLED was positioned at a nominal angle      |      |             |
|              | of 5° with the centerline of the test vehicle   |      |             |
|              | aligned with the nose of the system. The        |      |             |
|              | angled position examines the risk of            |      |             |
|              | exceeding occupant risk values, vehicle         |      |             |
|              | instability, capacity to absorb sufficient      |      |             |
|              | impact energy, and the SLED's ability to        |      |             |
|              | bring the vehicle to a controlled stop. The     |      |             |
|              | test was conducted using a commercially         |      |             |
|              | available 2013 RAM 1500 4-door pickup           |      |             |
|              | truck with a test inertial mass of 5,003.3 lbs. |      |             |
|              | (2,269.5 kg). The test vehicle impacted the     |      |             |
|              | crash cushion at a velocity of 63.22 mph        |      |             |
|              | (101.75 km/h) and at an impact angle of         |      |             |
|              | 5.4°. The test vehicle impacted the steel       |      |             |
|              | Containment Impact Sled (CIS), pushing it       |      |             |
|              | rearward crushing and rupturing the yellow      |      |             |
|              | empty module within the CIS. As the vehicle     |      |             |
|              | continued rearward the three yellow water       |      |             |
|              | filled modules were crushed, ruptured, and      |      |             |
|              | dispersed the contained water. The vehicle      |      |             |
| 3-43 (2270P) | rotated in a clockwise direction about its      | PASS |             |
|              | yaw axis before coming to a controlled stop     |      |             |
|              | 97.4 ft. (29.7 m) forward and 10.8 ft. (3.3 m)  |      |             |
|              | lateral from the initial point of impact. The   |      |             |
|              | yellow SLED modules remained tethered           |      |             |
|              | together and securely attached to the           |      |             |
|              | guardrail via the steel t-pins between the      |      |             |
|              | module knuckles which connects directly to      |      |             |
|              | the internal molded in steel cables. The        |      |             |
|              | impacting vehicle was brought to a              |      |             |
|              | controlled stop, remained upright and did       |      |             |
|              | not exhibit vaulting throughout the impact      |      |             |
|              | event. The test vehicle's occupant              |      |             |
|              | compartment was not penetrated and there        |      |             |
|              | was no in cab deformation beyond                |      |             |
|              | allowable limits. The maximum roll and          |      |             |
|              | pitch angle did not exceed 75° and              |      |             |
|              | occupant risk values were within limits per     |      |             |
|              | MASH specifications for Occupant Impact         |      |             |
|              | Velocity (OIV) and Ridedown Acceleration        |      |             |
|              | (RA). The SLED attached to guardrail met all    |      |             |
|              | the requirements of MASH Test 3-43.             |      |             |

# Version 10.0 (05/16)

.

|              |                                                 | Page 8 of 9                      |
|--------------|-------------------------------------------------|----------------------------------|
|              | The SLED was positioned at a nominal angle      |                                  |
|              | of 20° with the center line of the test vehicle |                                  |
|              | directed at the corner of the guardrail that is | ~                                |
|              | connected to the rearmost SLED yellow           |                                  |
|              | water filled module. The side angled impact     |                                  |
|              | test is to evaluate the SLED's ability to bring |                                  |
|              | the vehicle to a controlled stop. This angle    |                                  |
|              | and intersection directed the test vehicle      |                                  |
|              | into the third module from the front of the     |                                  |
|              | system. The test was conducted using a          |                                  |
|              | commercially available 2012 RAM 1500 4-         |                                  |
|              | door pickup truck with a test inertial mass of  |                                  |
|              | 4,989.0 lbs. (2,263.0 kg). The test vehicle     |                                  |
|              | impacted the SLED at a velocity of 62.38        |                                  |
|              | mph (100.39 km/h) and at an impact angle        |                                  |
|              | of 19.8°. The test vehicle impacted the third   |                                  |
|              | yellow water filled module, causing the         |                                  |
|              | vehicle to redirect slightly while crushing     |                                  |
|              | and rupturing the yellow filled module. As      |                                  |
|              | the vehicle continued forward the rearmost      |                                  |
|              | yellow water filled module was impacted         |                                  |
|              | and ruptured, which caused it to tear and       |                                  |
| 3-44 (2270P) | disperse the contained water at the             | PASS                             |
| 5 11 (22/01) | transition. The W-beam transition panel         | 1765                             |
|              | separated from the transition pin and           |                                  |
|              | allowed the vehicle to continue forward         |                                  |
|              | behind the crash cushion. The vehicle came      |                                  |
|              | to a controlled stop 117.8 ft. (35.9 m)         |                                  |
|              | downstream and 62.1 ft. (18.9 m) lateral        |                                  |
|              | from the initial point of impact. The yellow    |                                  |
|              | SLED modules remained tethered together         |                                  |
|              | but separated from the guardrail at the         |                                  |
|              | transition portion of the system. The steel t-  |                                  |
|              | pins between the module knuckles which          |                                  |
|              | connects directly to the internal molded in     |                                  |
|              | steel cables remained intact. The impacting     |                                  |
|              |                                                 |                                  |
|              | vehicle was brought to a controlled stop,       |                                  |
|              | remained upright and did not exhibit            |                                  |
|              | vaulting throughout the impact event. The       |                                  |
|              | test vehicle's occupant compartment was         |                                  |
|              | not penetrated and there was no in cab          |                                  |
|              | deformation beyond allowable limits. The        |                                  |
|              | maximum roll and pitch angle did not            |                                  |
|              | exceed 75°. The SLED attached to guardrail      |                                  |
|              | met all the requirements of MASH Test 3-44.     |                                  |
|              | Test 3-45 is intended for the evaluation of     |                                  |
|              | staging devices. The SLED uses water to         |                                  |
|              | dissipate the impacting vehicle's kinetic       |                                  |
|              | energy. All water-filled modules are            |                                  |
|              | physically the same in composition and          |                                  |
| 3-45 (1500A) | contain the same amount of water. The           | Non-Relevant Test, not conducted |
|              | force to activate each module is the same       |                                  |
|              | throughout the system, making the               |                                  |
|              | activation force linear throughout the          |                                  |
|              | system. Therefore the SLED is not a staging     |                                  |
|              | devices and test 3-45 is non-relevant and       |                                  |
|              | was not conducted.                              |                                  |

Full Scale Crash Testing was done in compliance with MASH by the following accredited crash test laboratory (cite the laboratory's accreditation status as noted in the crash test reports.):

| Laboratory Name:            | Applus IDIADA KARCO Engineering, LLC |  |                                                                      |  |
|-----------------------------|--------------------------------------|--|----------------------------------------------------------------------|--|
| Laboratory Signature:       | Steven Matsusaka                     |  | a, o=Applus IDIADA KARCO Engineering, LLC., ou,<br>@idiada.com, c=US |  |
| Address:                    | 9270 Holly Rd, Adelanto, CA 92301    |  | Same as Submitter 🗌                                                  |  |
| Country:                    | United States of America             |  | Same as Submitter 🗌                                                  |  |
| Accreditation Certificate   |                                      |  |                                                                      |  |
| Number and Dates of current | TL-371, July 1 2018 - July 1, 2019   |  |                                                                      |  |
| Accreditation period :      |                                      |  |                                                                      |  |

Submitter Signature\*: Robert Ramirez Digitally signed by Robert Ramirez Date: 2019.04.15 09:22:44 -07'00'

Submit Form

# ATTACHMENTS

Attach to this form:

1) Additional disclosures of related financial interest as indicated above.

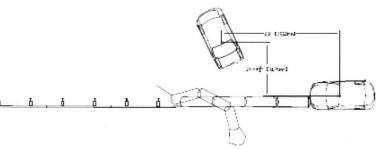
- 2) A copy of the full test report, video, and a Test Data Summary Sheet for each test conducted in support of this request.
- 3) A drawing or drawings of the device(s) that conform to the Task Force-13 Drawing Specifications [Hardware Guide Drawing Standards]. For proprietary products, a single isometric line drawing is usually acceptable to illustrate the product, with detailed specifications, intended use, and contact information provided on the reverse. Additional drawings (not in TF-13 format) showing details that are relevant to understanding the dimensions and performance of the device should also be submitted to facilitate our review.

FHWA Official Business Only:

| Eligibility Letter |      |           |
|--------------------|------|-----------|
| Number             | Date | Key Words |
|                    |      |           |

# MASH Test 3-40 Summary




0.000 s

0.200 s

0.400 s

0.600 s

1.000 s



#### **General Information**

| Test Agency      | KARCO Engineering, LLC. |  |
|------------------|-------------------------|--|
| KARCO Test No    | P37262-01               |  |
| Test Designation | 3-40                    |  |
| Test Date        | 07/23/17                |  |

#### **Test Article**

| Name / Model        | SLED Attached to Guardrail |
|---------------------|----------------------------|
| Туре                | . Crash Cushion            |
| Article Length      |                            |
| Installation Length | 136.1 ft. (41.5 m)         |
| Road Surface        |                            |
|                     |                            |
| T                   |                            |

# Test Vehicle

|   | Type / Designation    | 1100C                    |
|---|-----------------------|--------------------------|
|   | Year, Make, and Model |                          |
|   | Curb Mass             | 2,554.0 lbs (1,158.5 kg) |
|   | Test Inertial Mass    | 2,471.3 lbs (1,121.0 kg) |
|   | Gross Static Mass     | 2,627.9 lbs (1,192.0 kg) |
| _ |                       |                          |

#### Impact Conditions 0.5° Imnact Angle

| Impact Angle           | . 0.5                    |
|------------------------|--------------------------|
| Location / Orientation | Offset 16.8 in. (428 mm) |
| Kinetic Energy         | 325.6 kip-ft (441.5 kJ)  |

#### Exit Conditions

| Exit Velocity          | N/A                          |
|------------------------|------------------------------|
| Exit Angle             | N/A                          |
| Final Vehicle Position | 23.0 ft. (7.0 m ) downstream |
|                        | 10.4 ft. (3.2 m) right       |
| Vehicle Snagging       | None                         |
| Vehicle Pocketing      | None                         |
| Vehicle Stability      | Satisfactory                 |
| Maximum Roll Angle     | -8.1 °                       |
| Maximum Pitch Angle    | 5.2 °                        |
| Maximum Yaw Angle      | -113.7 °                     |
|                        |                              |

#### Occupant Risk Longitudinal OIV..... 10.6 m/s (34.8 ft/s) Lateral OIV...... 0.3 m/s (1.0 ft/s) Longitudinal RA.....-18.6 g Lateral RA.....-1.8 g THIV..... 10.5 m/s (34.4 ft/s) ASI..... 1.18 Test Article Deflections Static...... 7.2 ft. (2.2 m) Working Width...... 9.4 ft. (2.9 m) Debris Field...... 65.9 ft. (20.0 m) downstream 24.3 ft. (7.4 m) right Vehicle Damage Vehicle Damage Scale ..... 12-FD-4 CDC...... 12FDEW4

Maximum Intrusion......0.8 in. (19 mm)

Figure 2 Summary of Test 3-40

TR-P37262-01-NC

# MASH Test 3-41 Summary



0.000 s



0.127 s



0.381 s



0.635 s



1.143 s

e

#### **General Information**

| Test Agency      | IDIADA KARCO |
|------------------|--------------|
| KARCO Test No    | P37165-01    |
| Test Designation | 3-41         |
| Test Date        | 06/06/17     |

#### Test Article

| Name / Model        | SLED Attached to GR           |
|---------------------|-------------------------------|
| Туре                | Non-redirective Crash Cushion |
| Article Length      | 25.3 ft. (7.7 m)              |
| Installation Length | 131.4 (40.1 m)                |
| Road Surface        |                               |

#### **Test Vehicle**

| Type / Designation    | 2270P                      |
|-----------------------|----------------------------|
| Year, Make, and Model | 2013 Ram 1500              |
| Curb Mass             | 4,888.7 lbs (2,217.5 kg)   |
| Test Inertial Mass    | . 4,986.8 lbs (2,262.0 kg) |
| Gross Static Mass     | 4,986.8 lbs (2,262.0 kg)   |

# Impact Conditions Impact Velocity 62.75 mph (100.99 km/h) Impact Angle 0.6° Location / Orientation Center vehicle to center of CC Kinetic Energy 656.5 kip-ft (890.0 kJ)

### Exit Conditions

| Exit Velocity          | N/A                      |
|------------------------|--------------------------|
| Exit Angle             |                          |
| Final Vehicle Position | 8.2 ft. (2.5 m) Rearward |
|                        | 5.6 ft. (1.7 m) Left     |
| Vehicle Snagging       | None                     |
| Vehicle Pocketing      | None                     |
| Vehicle Stability      | Satisfactory             |
| Maximum Roll Angle     | 20.8 °                   |
| Maximum Pitch Angle    | -12.0 °                  |
| Maximum Yaw Angle      | 5.6 °                    |
|                        |                          |

# Occupant Risk

| Longitudinal OIV | 11.2 m/s (36.7 ft/s) |
|------------------|----------------------|
| Lateral OIV      | 0.3 m/s (1.0 ft/s)   |
| Longitudinal RA  | -11.5 g              |
| Lateral RA       | 1.2 g                |
| THIV             | 11.2 m/s (36.7 ft/s) |
| PHD              | 10.8 g               |
| ASI              | 1.13                 |

#### **Test Article Deflections**

| Static        | 1.6 ft. (0.5 m)  |
|---------------|------------------|
| Dynamic       | 1.6 ft. (0.5 m)  |
| Working Width | 10.7 ft. (3.3 m) |
| Debris Field  | N/A              |

#### Vehicle Damage

| Vehicle Damage Scale | . 12-FC-6         |
|----------------------|-------------------|
| CDC                  | 12FDEW2           |
| Maximum Intrusion    | . 0.4 in. (10 mm) |

# Figure 2 Summary of Test 3-41

# MASH Test 3-42 Summary







Jeors •



0.150 s



0 600 s

٠



0738s

Occupant Risk

Lateral OIV.

Lateral RA THIV

PHD.

ASL

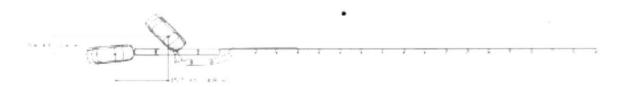
State

Longitudinal RA.

Test Article Deflections

Debris Field

Maximum Intrusion.


Dynamic.

Working Width.....

Vehicle Damage Vehicle Damage Scale ...

CDC

Longitudinal OIV.....



| General Information   |                               | Impact Conditions      |                              |
|-----------------------|-------------------------------|------------------------|------------------------------|
| Test Agency           | IDIADA KARCO                  | Impact Velocity        | . 61.99 mph (99.76 km/h)     |
| Test No.              |                               | Impact Angle           |                              |
| Test Designation      | 3-42                          | Location / Orientation | Center of CIS                |
| Test Date             | 05/18/18                      | Kinetic Energy         | 311.7 kip-ft (422.6 kJ)      |
| Test Article          |                               | Exit Conditions        |                              |
| Name / Model          | SLED Attached to Guardrail    | Exit Velocity          | N/A                          |
| Type                  | Non-Redirective Crash Cushion | Exit Angle             | N/A                          |
| Article Length        | 25.0 ft (7.6 m)               | Final Vehicle Position | 15.7 ft. (4.8 m.) downstream |
| Installation Length   |                               |                        | 58 ft (18 m) Left            |
| Road Surface          | Compacted Soil                | Exit Box Criteria Met. | N/A                          |
|                       |                               | Vehicle Snagging       | None                         |
| Test Vehicle          |                               | Vehicle Pocketing.     |                              |
| Type / Designation    | .1100C                        | Vehicle Stability      | Satisfactory                 |
| Year, Make, and Model | .2016 Hyundai Accent          | Maximum Roll Angle     | 7.7 *                        |
| Curb Mass             |                               | Maximum Pitch Angle    | 5.0 °                        |
| Test Inertial Mass    | . 2,426.1 lbs (1,100.5 kg)    | Maximum Yaw Angle      |                              |
| Gross Static Mass     | . 2,588.2 lbs (1,174.0 kg)    |                        |                              |

Figure 2 Summary of Test 3-42

. 33.8 ft/s (10.3 m/s)

-48g 33.8 ft/s (10.3 m/s)

1.0 ft/s (0.3 m/s)

-19.5 q

18.9 g

07 ft (0.2 m)

5.4 ft. (1.6 m)

11.1 ft (3.4 m)

12-FD-4

12FDEW4

0.1 in. (3 mm)

35.5 ft (26.0 m) downstream 34.8 ft. (10.6 m.) Left

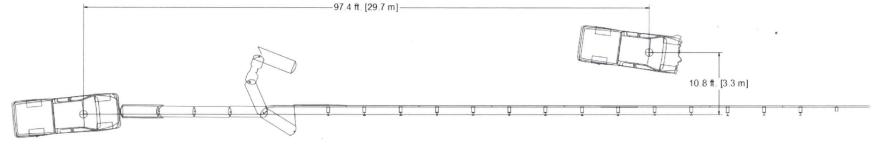
120

# MASH Test 3-43 Summary



0.600 s




0.000 s

0.100 s

0.200 s

S





#### **General Information**

| Test Agency      | IDIADA KARCO |
|------------------|--------------|
| Test No.         | P38132-01    |
| Test Designation | 3-43         |
| Test Date        | 05/24/18     |

## Test Article

| Name / Model        | SLED Attached to GR           |
|---------------------|-------------------------------|
| Туре                | Non-Redirective Crash Cushion |
| Article Length      | 25.3 ft. (7.7 m)              |
| Installation Length | 131.4 ft. (40.1 m)            |
| Road Surface        | Compacted Soil                |

#### Test Vehicle

|   | Type / Designation         | 2270P                    |   |
|---|----------------------------|--------------------------|---|
|   | Year, Make, and Model      | 2013 RAM 1500            |   |
|   | Curb Mass                  | 4,883.2 lbs (2,215.0 kg) |   |
|   | Test Inertial Mass         | 5,003.3 lbs (2,269.5 kg) |   |
|   | Gross Static Mass          | 5,003.3 lbs (2,269.5 kg) |   |
| - | oroco otatio macommissioni | 0,000.0 mo (2,200.0 mg/  | - |

 Impact Conditions

 Impact Velocity
 63.22 mph (101.75 km/h)

 Impact Angle
 5.4°

 Location / Orientation
 Center of CIS

 Kinetic Energy
 668.5 kip-ft (906.4 kJ)

# Exit Conditions

| Exit Velocity          | 14.04 mph (22.60 km/h) |
|------------------------|------------------------|
| Exit Angle             | 11.2°                  |
| Final Vehicle Position | 97.4 ft. (29.7 m ) dw  |
|                        | 10.8 ft. (3.3 m) Left  |
| Vehicle Snagging       | None                   |
| Vehicle Pocketing      | None                   |
| Vehicle Stability      | Satisfactory           |
| Maximum Roll Angle     | 8.8 °                  |
| Maximum Pitch Angle    | 23.8 °                 |
| Maximum Yaw Angle      | -22.9 °                |
|                        |                        |

# Occupant Risk

| Longitudinal OIV | . 32.2 ft/s (9.8 m/s) |
|------------------|-----------------------|
| Lateral OIV      | . 2.6 ft/s (0.8 m/s)  |
| Longitudinal RA  | -12.8 g               |
| Lateral RA       | 3.9 g                 |
| THIV             | 32.2 ft/s (9.8 m/s)   |
| PHD              | . 12.0 g              |
| ASI              | 0.88                  |

#### Test Article Deflections

| Static               | 7.8 ft. (2.4 m)               |
|----------------------|-------------------------------|
| Dynamic              | 8.2 ft. (2.5 m)               |
| Working Width        | 16.4 ft. (5.0 m)              |
| Debris Field         | 110.9 ft. (33.8 m) downstream |
|                      | 29.8 ft. (9.1 m) Left         |
| Vehicle Damage       |                               |
| Vehicle Damage Scale | 12-FD-4                       |
| CDC                  | 12FDEW4                       |
| Maximum Intrusion    | 0.2 in. (6 mm)                |

Figure 2 Summary of Test 3-43

# MASH Test 3-44 Summary



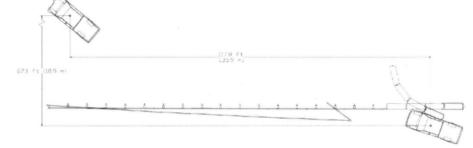











0.000 s







.



#### **General Information**

| Test Agency      | IDIADA KARCO |
|------------------|--------------|
| Test No          | P37261-01    |
| Test Designation | 3-44         |
| Test Date        | 07/26/17     |

# Test Article

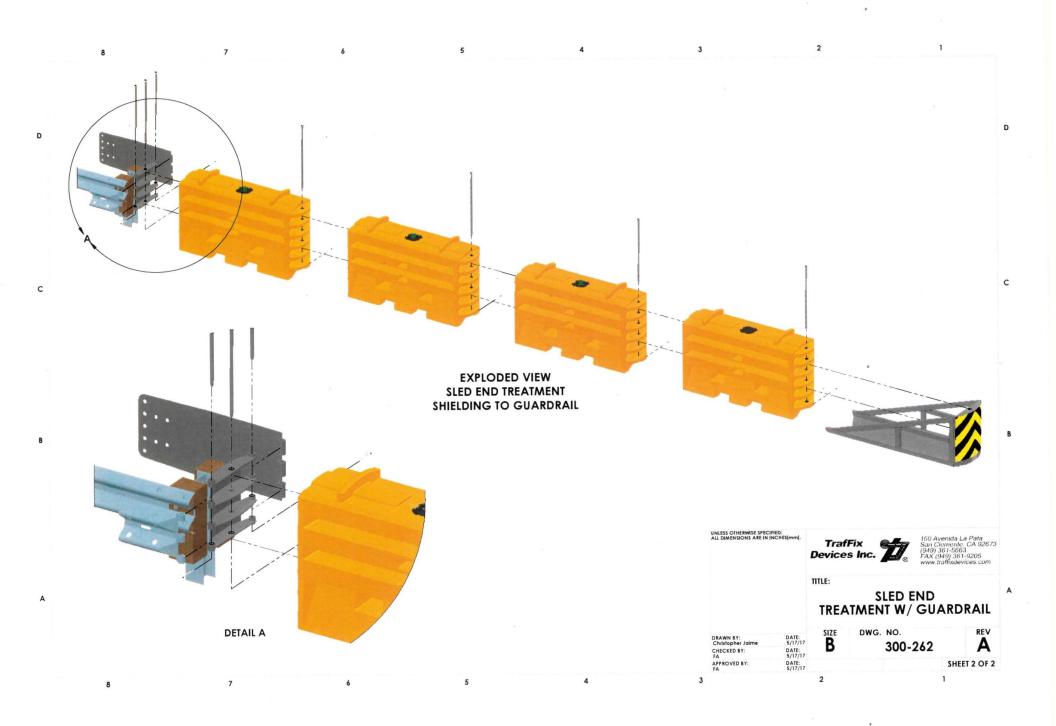
|   | Name / Model        | SLED Attached to GR           |
|---|---------------------|-------------------------------|
|   | Туре                | Non-Redirective Crash Cushion |
|   | Article Length      | 25.3 ft. (7.7 m)              |
|   | Installation Length | 131.4 ft. (40.1 m)            |
|   | Road Surface        | Compacted Soil                |
| _ | ast Vahiala         |                               |

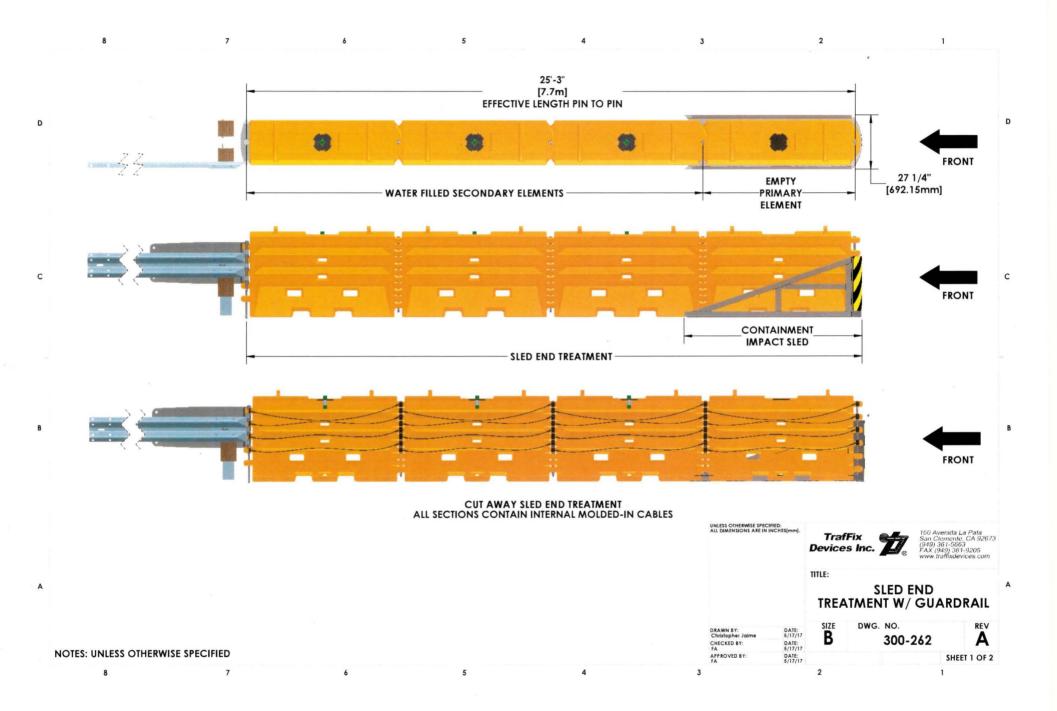
#### Test Vehicle

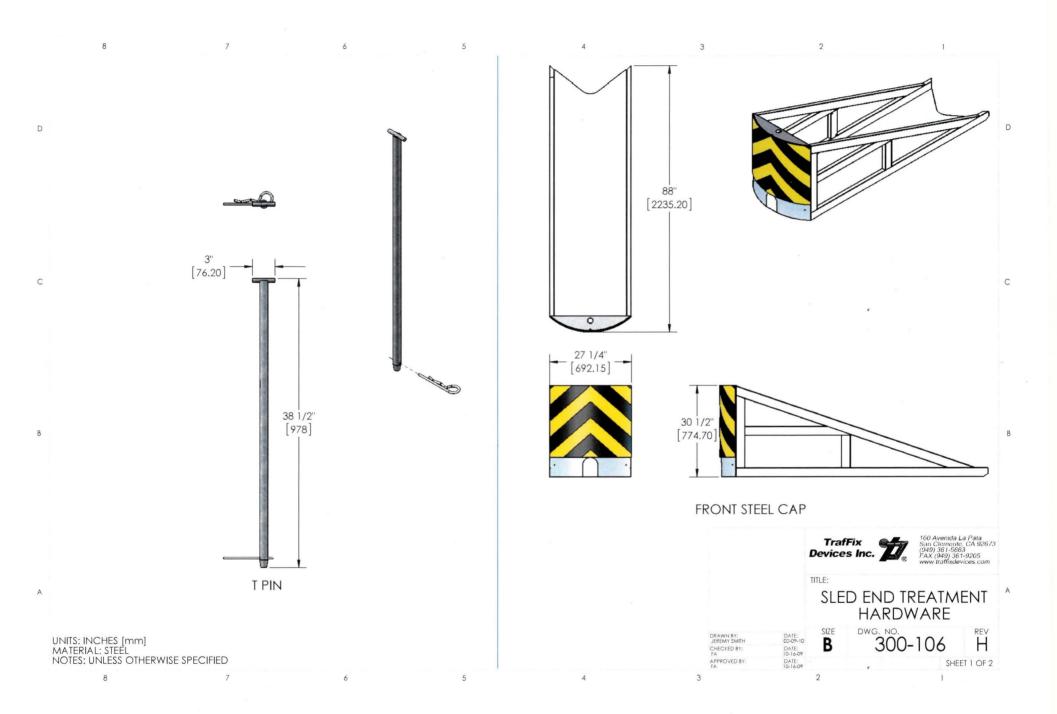
| Type / Designation    | . 2270P                    |
|-----------------------|----------------------------|
| Year, Make, and Model | . 2012 RAM 1500            |
| Curb Mass             | 4,990.1 lbs (2,263.5 kg)   |
| Test Inertial Mass    | 4,989.0 lbs (2,263.0 kg)   |
| Gross Static Mass     | . 4,989.0 lbs (2,263.0 kg) |

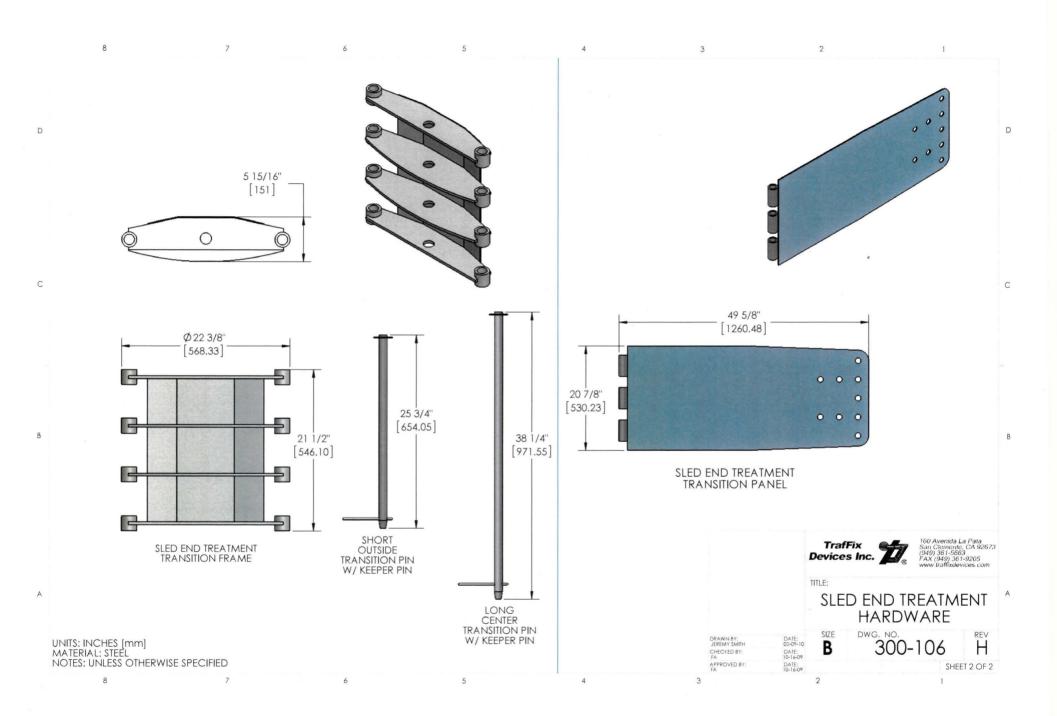
# Impact Conditions

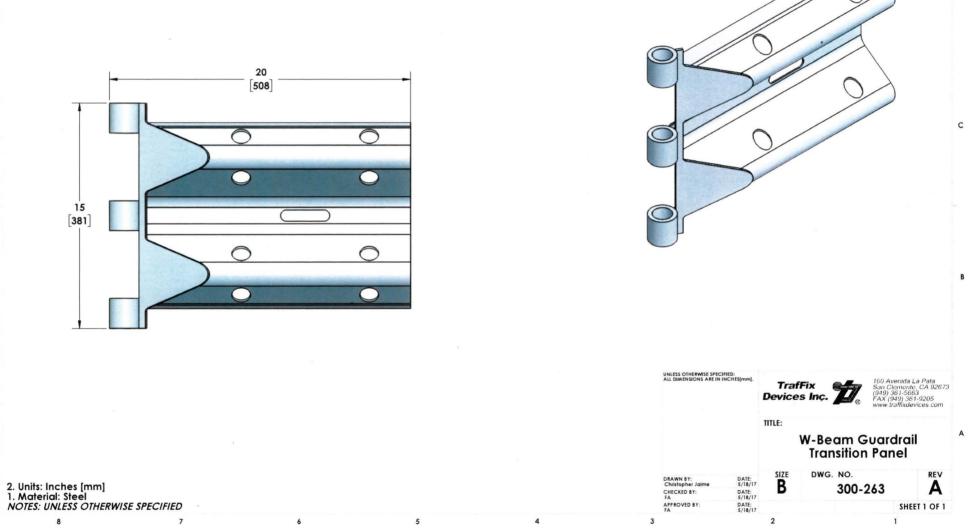
| Impact Velocity        | 62.38 mph (100.39 km/h)   |
|------------------------|---------------------------|
| Impact Angle           | 19.8°                     |
| Location / Orientation | Veh. CL to W-Beam Leading |
| Kinetic Energy         | 649.0 kip-ft (879.9 kJ)   |


## Exit Conditions


| Exit Velocity          | 25.34 mph (40.78 km/h)         |
|------------------------|--------------------------------|
| Exit Angle             |                                |
| Final Vehicle Position | 117.8 ft. (35.9 m ) downstream |
|                        | 62.1 ft. (18.9 m) Right        |
| Vehicle Snagging       | Minor                          |
| Vehicle Pocketing      | None                           |
| Vehicle Stability      | Satisfactory                   |
| Maximum Roll Angle     | -4.7 °                         |
| Maximum Pitch Angle    | 9.8 °                          |
| Maximum Yaw Angle      | 13.0 °                         |
|                        |                                |


# Occupant Risk


| 26.6 ft/s (8.1 m/s)           |
|-------------------------------|
| 6.9 ft/s (2.1 m/s)            |
| -10.0 g                       |
| 4.1 g                         |
| 27.6 ft/s (8.4 m/s)           |
| 10.1 g                        |
| 0.82                          |
|                               |
| 14.3 ft. (4.4 m)              |
| N/A                           |
| 18.1 ft (5.5 m)               |
| 105.9 ft. (32.3 m) downstream |
| 45.9 ft. (14.0 m) right       |
|                               |
| 12-FD-4                       |
| 12FDEW4                       |
| 1.3 in. (33 mm)               |
|                               |


Figure 2 Summary of Test 3-44

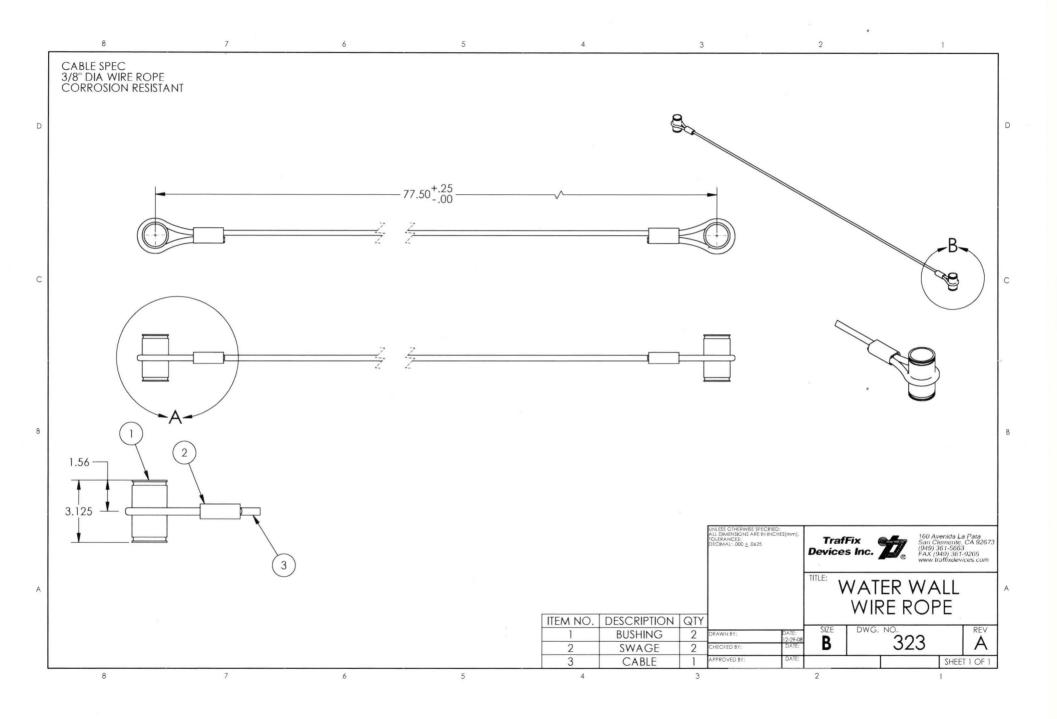











D

D

С

В

Α

